Mathematical structures in logic Exercise class 7

March 17, 2016

1. Let R be a quasi-order, i.e. transitive and reflexive, on a set X. Define $\Box_R \colon \wp(X) \to \wp(X)$ by

$$\Box_R(U) = \{ x \in X \colon R[x] \subseteq U \},\$$

where $R[x] = \{x' \in X : xRx'\}.$

- (a) Show that $(\wp(X), \Box_R)$ is an **S4**-algebra¹.
- (b) Determine the fixed points of the operator \Box_R .
- (c) Can you define a finite join preserving function $\diamond_R \colon \wp(X) \to \wp(X)$ in a similar way? What are the fixed points for this operator.
- 2. Let $\mathfrak{X} = (X, \tau)$ be a topological space show $(\wp(X), \operatorname{Int}_{\tau})$ is an **S4**-algebra where $\operatorname{Int}_{\tau} : \wp(X) \to \wp(X)$ is the interior operation. What are the fixed points for $\operatorname{Int}_{\tau}$? Let (P, \leq) be a poset and let (P, τ_{\leq}) be the corresponding Alexandroff space. What is the relationship between the **S4**-algebras $(\wp(P), \Box_{\leq})$ and $(\wp(P), \operatorname{Int}_{\tau_{\leq}})$?
- 3. (Gödel translation)
 - (a) Let $\mathfrak{A} = (A, \Box)$ be an **S4**-algebra. Show that

$$H(\mathfrak{A}) := \{a \in A \colon \Box a = a\}$$

is a sublattice of A having a Heyting implication given by

$$a \to_{H(\mathfrak{A})} b := \Box(a \to_A b).$$

- (b) Show that for every finite Heyting algebra A there exists a finite **S4**-algebra $\mathfrak{B} = (B, \Box)$ such that $H(\mathfrak{B}) \simeq A$ as Heyting algebras.
- (c) Convince yourself that modal logic **S4** is sound and complete with respect to **S4**-algebras.
- (d) Show that $\vdash_{\mathbf{IPC}} \phi$ if and only $\vdash_{\mathbf{S4}} \phi^{\Box}$, where ϕ^{\Box} denotes the Gödel translation of ϕ .²
- 4. Is the variety of **S4**-algebras locally finite?

¹Also know as an *interior algebra*.

²*Hint:* For one direction use a) to show that if ϕ^{\Box} fails on some **S4** algebra then it also fails on a Heyting algebra. For the other direction use that **IPC** has the finite model property show that if ϕ fails on some finite HA, say A, then ϕ^{\Box} fails on some **S4**-algebra of the form $(\wp(X_A), \Box)$.

Additional exercises

1. Let \mathbb{V} be a variety of algebras for some fixed signature. Show, using Birkhoff's Theorem³, that a class of \mathbb{V} -algebras K generates \mathbb{V} iff

 $\mathbb{V}\models s\approx t\iff K\models s\approx t,$

for all equations $s \approx t$ in the appropriate language.

- 2. Let $f: (P, \leq) \to (P', \leq')$ be an order preserving function between partial orders. Show that the following are equivalent
 - (a) The function f is a p-morphism;
 - (b) $f^{-1}(\downarrow U') = \downarrow f^{-1}(U')$, for all $U' \subseteq P'$;
 - (c) $f^{-1}(\downarrow p') = \downarrow f^{-1}(\{p'\})$, for all $p' \in P'$;
 - (d) $\uparrow f(p) = f[\uparrow p]$ for all $p \in P$.
 - (e) the function f is open as a continuous map between the induced Alexandroff spaces (P, τ_{\leq}) and $(P', \tau_{\leq'})$.
- 3. (For those familiar with the canonical model construction) Recall the definition of the Lindenbaum-Tarski algebra $\operatorname{Form}(P)/\sim_{\operatorname{IPC}}$ for IPC and the canonical frame \mathfrak{F}_C . Show (in detail) that the dual Esakia space of $\operatorname{Form}(P)/\sim_{\operatorname{IPC}}$ is \mathfrak{F}_C topologized via the topology generated by the subbasis

$$\{V(\psi), V(\psi)^c \mid \psi \in \operatorname{Form}(P)\},\$$

where V is the canonical valuation on \mathfrak{F}_C .

- 4. Find a modal algebra A for which the posets $(Con(A), \subseteq)$ and $(Fil(A), \subseteq)$ are not isomorphic.⁴ What kind of filters correspond to congruences on modal algebras?
- 5. Given a finite **S4**-algebra (A, \Box) can you find a quasi-order R_{\Box} on At(A) such that (A, \Box) and $(\wp(\operatorname{At}(A)), \Box_{R_{\Box}})$ are isomorphic as **S4**-algebras? What happens in the case where A is infinite?
- 6. Let X be a set. Show that there is a one-to-one correspondence between relations R on X and functions $\xi_R \colon X \to \wp(X)$. Let (X, R) and (X', R')be Kripke frames and let $f \colon X \to X'$ be a relation preserving map show that f is a p-morphism iff the following diagram

$$\begin{array}{c} X \xrightarrow{f} X' \\ \downarrow \xi_R & \downarrow \xi_{R'} \\ \varphi(X) \xrightarrow{f[-]} \varphi(X') \end{array}$$

commutes

7. (For whose who know some category theory) Show that the category of Kripke frames and p-morphisms is isomorphic to the category of coalgebras for the (covariant) power-set functor $\wp: \mathbf{Set} \to \mathbf{Set}$.

³Note that Birkhoff's Theorem say that if \mathbb{V} is a variety then \mathbb{V} are precisely then set of algebras validating the equational theory of \mathbb{V} .

⁴*Hint:* It suffices to find a finite algebra A such that Con(A) and Fil(A) are not of the same cardinality.